On second Zagreb index and coindex of some derived graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

F-index and coindex of some derived graphs

In this study, the explicit expressions for F-index and coindex of derived graphs such as a line graph, subdivision graph, vertex-semitotal graph, edge-semitotal graph, total graph and paraline graph (line graph of the subdivision graph) are obtained.

متن کامل

On the Multiplicative Zagreb Coindex of Graphs

Abstract. For a (molecular) graph G with vertex set V (G) and edge set E(G), the first and second Zagreb indices of G are defined as M1(G) = ∑ v∈V (G) dG(v) 2 and M2(G) = ∑ uv∈E(G) dG(u)dG(v), respectively, where dG(v) is the degree of vertex v in G. The alternative expression of M1(G) is ∑ uv∈E(G)(dG(u) + dG(v)). Recently Ashrafi, Došlić and Hamzeh introduced two related graphical invariants M...

متن کامل

A note on the first Zagreb index and coindex of graphs

Let $G=(V,E)$, $V={v_1,v_2,ldots,v_n}$, be a simple graph with$n$ vertices, $m$ edges and a sequence of vertex degrees$Delta=d_1ge d_2ge cdots ge d_n=delta$, $d_i=d(v_i)$. Ifvertices $v_i$ and $v_j$ are adjacent in $G$, it is denoted as $isim j$, otherwise, we write $insim j$. The first Zagreb index isvertex-degree-based graph invariant defined as$M_1(G)=sum_{i=1}^nd_i^2$, whereas the first Zag...

متن کامل

On the second order first zagreb index

Inspired by the chemical applications of higher-order connectivity index (or Randic index), we consider here the higher-order first Zagreb index of a molecular graph. In this paper, we study the linear regression analysis of the second order first Zagreb index with the entropy and acentric factor of an octane isomers. The linear model, based on the second order first Zag...

متن کامل

comparing the second multiplicative zagreb coindex with some graph invariants

‎the second multiplicative zagreb coindex of a simple graph $g$ is‎ ‎defined as‎: ‎$${overline{pi{}}}_2left(gright)=prod_{uvnotin{}e(g)}d_gleft(uright)d_gleft(vright),$$‎ ‎where $d_gleft(uright)$ denotes the degree of the vertex $u$ of‎ ‎$g$‎. ‎in this paper‎, ‎we compare $overline{{pi}}_2$-index with‎ ‎some well-known graph invariants such as the wiener index‎, ‎schultz‎ ‎index‎, ‎eccentric co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kragujevac Journal of Science

سال: 2015

ISSN: 1450-9636

DOI: 10.5937/kgjsci1537113b